Search results for "Structural complexity theory"
showing 5 items of 5 documents
On Physical Problems that are Slightly More Difficult than QMA
2013
We study the complexity of computational problems from quantum physics. Typically, they are studied using the complexity class QMA (quantum counterpart of NP) but some natural computational problems appear to be slightly harder than QMA. We introduce new complexity classes consisting of problems that are solvable with a small number of queries to a QMA oracle and use these complexity classes to quantify the complexity of several natural computational problems (for example, the complexity of estimating the spectral gap of a Hamiltonian).
Algorithmic Information Theory and Computational Complexity
2013
We present examples where theorems on complexity of computation are proved using methods in algorithmic information theory. The first example is a non-effective construction of a language for which the size of any deterministic finite automaton exceeds the size of a probabilistic finite automaton with a bounded error exponentially. The second example refers to frequency computation. Frequency computation was introduced by Rose and McNaughton in early sixties and developed by Trakhtenbrot, Kinber, Degtev, Wechsung, Hinrichs and others. A transducer is a finite-state automaton with an input and an output. We consider the possibilities of probabilistic and frequency transducers and prove sever…
Non-intersecting Complexity
2006
A new complexity measure for Boolean functions is introduced in this article. It has a link to the query algorithms: it stands between both polynomial degree and non-deterministic complexity on one hand and still is a lower bound for deterministic complexity. Some inequalities and counterexamples are presented and usage in symmetrisation polynomials is considered.
Effects of Kolmogorov complexity present in inductive inference as well
1997
For all complexity measures in Kolmogorov complexity the effect discovered by P. Martin-Lof holds. For every infinite binary sequence there is a wide gap between the supremum and the infimum of the complexity of initial fragments of the sequence. It is assumed that that this inevitable gap is characteristic of Kolmogorov complexity, and it is caused by the highly abstract nature of the unrestricted Kolmogorov complexity.
Inductive inference of recursive functions: Complexity bounds
2005
This survey includes principal results on complexity of inductive inference for recursively enumerable classes of total recursive functions. Inductive inference is a process to find an algorithm from sample computations. In the case when the given class of functions is recursively enumerable it is easy to define a natural complexity measure for the inductive inference, namely, the worst-case mindchange number for the first n functions in the given class. Surely, the complexity depends not only on the class, but also on the numbering, i.e. which function is the first, which one is the second, etc. It turns out that, if the result of inference is Goedel number, then complexity of inference ma…